Your browser doesn't support the features required by impress.js, so you are presented with a simplified version of this presentation.

For the best experience please use the latest Chrome, Safari or Firefox browser.

\[ \newcommand{\IR}{\mathbb{R}} \newcommand{\IRnn}{\IR_{\geq 0}} \newcommand{\IRp}{\IR_{\gt 0}} \newcommand{\IN}{\mathbb{N}} \newcommand{\INo}{\IN_0} \newcommand{\INs}{\IN^\ast} \newcommand{\coloneqq}{\mathbin{:=}} \newcommand{\eqqcolon}{\mathbin{=:}} \newcommand{\coloniff}{\mathbin{:\!\!\iff}} \newcommand{\dcup}{\mathbin{\dot\cup}} \newcommand{\sMid}{\,|\,} \newcommand{\Set}[1]{\left\lbrace#1\right\rbrace} \newcommand{\SMid}{\,\middle|\,} \newcommand{\abs}[1]{\lvert#1\rvert} \newcommand{\Abs}[1]{\left\lvert#1\right\rvert} \newcommand{\norm}[1]{\lVert#1\rVert} \newcommand{\Norm}[1]{\left\lVert#1\right\rVert} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\PSet}[1]{2^{#1}} \newcommand{\bigO}{\mathcal{O}} \newcommand{\transp}{^\top} \newcommand{\sgn}{\mathop{\mathrm{sgn}}} \newcommand{\eps}{\varepsilon} \newcommand{\rddots}{\large{\small.}^{.^.}} \newcommand{\CharF}[1]{\chi_{#1}} \newcommand{\diff}{\;\mathrm{d}} \newcommand{\classFP}{\mathrm{FP}} \newcommand{\classFNP}{\mathrm{FNP}} \newcommand{\classFNPC}{\mathrm{FNPC}} \newcommand{\classTFNP}{\mathrm{TFNP}} \newcommand{\classPPAD}{\mathrm{PPAD}} \newcommand{\classPLS}{\mathrm{PLS}} \newcommand{\SocOptPNEinUnwCong}{\style{font-variant-caps:small-caps}{\text{SocOptPNEinUnwCong}\hspace{1em}}} \newcommand{\HamiltonCycle}{\style{font-variant-caps:small-caps}{\text{HamiltonCycle}\hspace{1em}}} \newcommand{\LocalMaxCut}{\style{font-variant-caps:small-caps}{\text{LocalMaxCut with Flip-Neighbourhood}\,}} \newcommand{\plInitk}{{\color{var(--plInitkCol)}\mathrm{Init}^k}} \newcommand{\plTriggerk}{{\color{var(--plTriggerkCol)}\mathrm{Trigger}^k}} \newcommand{\plTriggerkp}{{\color{var(--plTriggerkpCol)}\mathrm{Trigger}^{k+1}}} \newcommand{\plPlayerAk}{{\color{var(--plPlayerAkCol)}\mathrm{Player}_1^k}} \newcommand{\plPlayerBk}{{\color{var(--plPlayerBkCol)}\mathrm{Player}_2^k}} \newcommand{\plStart}{{\color{var(--plStartCol)}\mathrm{Start}}} \]

§4.4 Non-Atomic Congestion Games

  • finite set of populations $\tilde N$ consisting of a continuum of players $[0,d_i]$
  • finite set of resources $R$ with non-neg., non-decr., cont. resource costs $c_r: \IRnn \to \IRnn$
  • sets of strategies $S_i \subseteq \set{0,1}^R$
  • set of strategy profiles of population $i$: $X_i \coloneqq \set{x_i \in \IRnn^{S_i} \sMid \sum_{s_i \in S_i}x_{is_i} = d_i}$
  • set of strategy profiles: $X \coloneqq \prod_{i \in \tilde N}X_i$
  • $\ell: X \to \IRnn^R, x \mapsto (\ell_r(x)) \coloneqq \bigl(\sum_{i \in \tilde N}\sum_{s_i \in S_i:\, r \in R(s_i)}x_{is_i}\bigr)$ load/congestion vector
  • private cost of players of population $i$ using strategy $s_i \in S_i$ under strategy profile $x \in X$: \[\pi_{is_i}(x) \coloneqq \sum_{r \in R(s_i)}c_r(\ell_r(x))\]
social cost $C(x) \coloneqq \sum_{i \in \tilde N}\sum_{s_i \in S_i}\pi_{is_i}(x)\cdot x_{is_i} \class{tempstep a}{\data{tempstep-from=22}{= \sum_{r \in R}c_r(\ell_r(x))\cdot\ell_r(x)}}$
⤳ $x \in X$ Wardrop equilibrium $\coloniff \forall i \in \tilde N\, \forall s_i, s'_i \in S_i:$ $x_{is_i} \gt 0$ $\,\implies \pi_{is_i}(x) \leq \pi_{is'_i}(x)$
For (atomic) congestion game $G=(N,S,\pi)$:
$s \in S$ (pure) Nash equilibrium $\coloniff \forall i \in N \, \forall s'_i \in S_i: \pi_i(s) \leq \pi_i(s'_i,s_{-i})$
\tilde N = [1] d_1 = 1 \small\color{black} o \small\color{black} v \small\color{black} w \small\color{black} d \small\color{black}z \mapsto z \small\color{black}z \mapsto 1 \small\color{black}z \mapsto 0 \small\color{black}z \mapsto 1 \small\color{black}z \mapsto z \small\color{var(--blue)}1/2 \small\color{var(--green)}1/2 \small\color{var(--red)}1
$R(s)$ $\color{var(--blue)}\set{ov,vd}$ $\color{var(--green)}\set{ow,wd}$ $\color{var(--red)}\set{ov,vw,vd}$
$x$ $1/2$ $1/2$ $0$
$\pi_{s}(x)$ $3/2$ $3/2$ $1$
$x'$ $0$ $0$ $1$
$\pi_{s}(x')$ $2$ $2$ $2$
Lem. 4.51: $x \in X$ WE $\implies \exists k_i \in \IRnn: \forall s_i \in S_i: \pi_{is_i}(x) \begin{cases}= k_i, &\text{if } x_{is_i} \gt 0 \\ \geq k_i, &\text{else}\end{cases}$
Thm. 4.52: For any $x \in X$ the following are equivalent
  1. $x$ is a Wardrop equilibrium
  2. $\forall y \in X: \sum_{r \in R}c_r(\ell_r(x))\cdot(\ell_r(y)-\ell_r(x)) \geq 0$ mmmm"variational inequality"
  3. $x \in \argmin_{z \in X} \Phi(z) \coloneqq \sum_{r \in R}\int_0^{\ell_r(z)}c_r(t)\diff t$mmmmmm"optimum of potential"
Thm. 4.53: For any non-atomic congestion game
  1. There exists a Wardrop equilibrium
  2. $\forall x,y \in X$ WE $\implies \forall r \in R: c_r(\ell_r(x)) = c_r(\ell_r(y))$
If all $c_r$ are strictly increasing then, additionally,
  1. $\forall x,y \in X$ WE $\implies \forall r \in R: \ell_r(x) = \ell_r(y)$
$G=(N,S,\pi)$ unw. (atomic) congestion game
⤳ $s \in S$ Wardrop equilibrium $\coloniff \forall i \in N, s_i' \in S_I:$
    $\sum_{r \in R(s_i)}c_r(\ell_r(s)) \leq \sum_{r \in R(\class{tempstep}{\data{tempstep-classes=6-7:hl}{s_i'}})}c_r(\ell_r(\class{tempstep}{\data{tempstep-classes=6-7:hl}{s}}))$
For (atomic) congestion game $G=(N,S,\pi)$:
$s \in S$ (pure) Nash equilibrium $\coloniff \forall i \in N \, \forall s'_i \in S_i: \pi_i(s) \leq \pi_i(s'_i,s_{-i})$
Lem. 4.55: In unweighted atomic congestion games with non-decreasing, separable resource cost fcts
every WE is also a PNE.
Computational Game Theory (WiSe25/26), §4.4 Non-Atomic Congestion Games
Lukas Graf (lukas.graf@uni-passau.de)
↑ All Slides